ml.dmlc.xgboost4j.scala

XGBoost

Related Doc: package scala

object XGBoost

XGBoost Scala Training function.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. XGBoost
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  5. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def crossValidation(data: DMatrix, params: Map[String, Any], round: Int, nfold: Int = 5, metrics: Array[String] = null, obj: ObjectiveTrait = null, eval: EvalTrait = null): Array[String]

    Cross-validation with given parameters.

    Cross-validation with given parameters.

    data

    Data to be trained.

    params

    Booster params.

    round

    Number of boosting iterations.

    nfold

    Number of folds in CV.

    metrics

    Evaluation metrics to be watched in CV.

    obj

    customized objective

    eval

    customized evaluation

    returns

    evaluation history

    Annotations
    @throws( classOf[XGBoostError] )
  7. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  13. def loadModel(in: InputStream): Booster

    Load a new Booster model from a file opened as input stream.

    Load a new Booster model from a file opened as input stream. The assumption is the input stream only contains one XGBoost Model. This can be used to load existing booster models saved by other XGBoost bindings.

    in

    The input stream of the file.

    returns

    The create booster

    Annotations
    @throws( classOf[XGBoostError] )
  14. def loadModel(modelPath: String): Booster

    load model from modelPath

    load model from modelPath

    modelPath

    booster modelPath

    Annotations
    @throws( classOf[XGBoostError] )
  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  19. def toString(): String

    Definition Classes
    AnyRef → Any
  20. def train(dtrain: DMatrix, params: Map[String, Any], round: Int, watches: Map[String, DMatrix] = Map[String, DMatrix](), obj: ObjectiveTrait = null, eval: EvalTrait = null): Booster

    Train a booster given parameters.

    Train a booster given parameters.

    dtrain

    Data to be trained.

    params

    Parameters.

    round

    Number of boosting iterations.

    watches

    a group of items to be evaluated during training, this allows user to watch performance on the validation set.

    obj

    customized objective

    eval

    customized evaluation

    returns

    The trained booster.

    Annotations
    @throws( classOf[XGBoostError] )
  21. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped