ml.dmlc.xgboost4j.scala.spark.params

LearningTaskParams

Related Doc: package params

trait LearningTaskParams extends Params

Linear Supertypes
Params, Serializable, Serializable, Identifiable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LearningTaskParams
  2. Params
  3. Serializable
  4. Serializable
  5. Identifiable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def copy(extra: ParamMap): Params

    Definition Classes
    Params
  2. abstract val uid: String

    Definition Classes
    Identifiable

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  6. val baseScore: DoubleParam

    the initial prediction score of all instances, global bias.

    the initial prediction score of all instances, global bias. default=0.5

  7. final def clear(param: Param[_]): LearningTaskParams.this.type

    Definition Classes
    Params
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def copyValues[T <: class="extype" name="org.apache.spark.ml.param.Params">Params](to: T, extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  10. final def defaultCopy[T <: class="extype" name="org.apache.spark.ml.param.Params">Params](extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  11. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  13. val evalMetric: Param[String]

    evaluation metrics for validation data, a default metric will be assigned according to objective(rmse for regression, and error for classification, mean average precision for ranking).

    evaluation metrics for validation data, a default metric will be assigned according to objective(rmse for regression, and error for classification, mean average precision for ranking). options: rmse, mae, logloss, error, merror, mlogloss, auc, ndcg, map, gamma-deviance

  14. def explainParam(param: Param[_]): String

    Definition Classes
    Params
  15. def explainParams(): String

    Definition Classes
    Params
  16. final def extractParamMap(): ParamMap

    Definition Classes
    Params
  17. final def extractParamMap(extra: ParamMap): ParamMap

    Definition Classes
    Params
  18. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  19. final def get[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  20. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  21. final def getDefault[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  22. final def getOrDefault[T](param: Param[T]): T

    Definition Classes
    Params
  23. def getParam(paramName: String): Param[Any]

    Definition Classes
    Params
  24. final def hasDefault[T](param: Param[T]): Boolean

    Definition Classes
    Params
  25. def hasParam(paramName: String): Boolean

    Definition Classes
    Params
  26. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  27. final def isDefined(param: Param[_]): Boolean

    Definition Classes
    Params
  28. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  29. final def isSet(param: Param[_]): Boolean

    Definition Classes
    Params
  30. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  31. final def notify(): Unit

    Definition Classes
    AnyRef
  32. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  33. val objective: Param[String]

    Specify the learning task and the corresponding learning objective.

    Specify the learning task and the corresponding learning objective. options: reg:linear, reg:logistic, binary:logistic, binary:logitraw, count:poisson, multi:softmax, multi:softprob, rank:pairwise, reg:gamma. default: reg:linear

  34. lazy val params: Array[Param[_]]

    Definition Classes
    Params
  35. final def set(paramPair: ParamPair[_]): LearningTaskParams.this.type

    Attributes
    protected
    Definition Classes
    Params
  36. final def set(param: String, value: Any): LearningTaskParams.this.type

    Attributes
    protected
    Definition Classes
    Params
  37. final def set[T](param: Param[T], value: T): LearningTaskParams.this.type

    Definition Classes
    Params
  38. final def setDefault(paramPairs: ParamPair[_]*): LearningTaskParams.this.type

    Attributes
    protected
    Definition Classes
    Params
  39. final def setDefault[T](param: Param[T], value: T): LearningTaskParams.this.type

    Attributes
    protected
    Definition Classes
    Params
  40. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  41. def toString(): String

    Definition Classes
    Identifiable → AnyRef → Any
  42. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  43. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  44. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def validateParams(): Unit

    Definition Classes
    Params
    Annotations
    @deprecated
    Deprecated

    (Since version 2.0.0) Will be removed in 2.1.0. Checks should be merged into transformSchema.

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Ungrouped